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Abstract. Configurational (geometrical) averaging over all possible wnfigurations is often 
used in the calculation of properties of polymer chains and branched structures. We show 
that for constrained systems more general consideration is needed which includes 
averaging over the dynamical degrees of freedom. As an example, we have found non- 
trivial angle distribution functions for the simplest models of rigid monomers freely joined 
with each other. It is shown that a Flory-Stockmayer and percolation approach on be 
inapplicable for the description of the equilibrium solution of polymers. 

A standard approach in a study of confignrational statistics of complex systems 
consists in calculation of their partition function. For the description of linear or 
branched polymers this partition function traditionally is written as a sum (or integral) 
over all possible configurations of the system [l-31: 

r 

(1) z = ~ , . , ~ - u ( i w r .  I 
Here U({rJ) is the interaction energy of each configuration. 

The simplest model used for the description of polymers is a model of long sticks- 
monomers which are freely joined at their ends with each other. In the absence of 
excluded volume interactions U({rJ) = 0 this model is believed to be extremely simple: 
all angles between the adjacent sticks are considered as independent variabtes and 
each angle is assumed to be uniformly distributed. 

The partition function written in the form (l), referred to as ‘geometrical‘, is a 
starting point of the Flory-Stockmayer approach [4]. It is a basis of application of the 
percolation model to the problem of weight and size distribution of polymer molecules 
[5]. The equivalence of the statistics of the solution of the linear polymers to the 
thermodynamics of the n-component Heisenberg magnet in the n = 0 h i t  [6] is also 
based on this formula. 

The purpose of this paper is to show that in constrained systems, the simple 
geometrical approach based on (1) is often inapplicable. Using the above model as an 
example we shall show that, if calculated from fist  principles, the distribution of 
angles between two neighbouring sticks is non-trivial and depends strongly on mass 
distribution and internal constraints. We shall give arguments that there are serious 
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Figure 1. (a) Two rigid sticks mnnected by free joint; heavy dot indicates position of a 
centre of mass. The moment of inertia of the system depends on the angle 8. (b) Two 
monomers (sticks) inside the long polymer chain. After the thermal average over all other 
degrees of freedom is done, the rest of the chain cao be represented by masses M, = N-n-2 
and M , = n  placed at the external ends of two sticks. 

restrictions in the application of Flory-Stockmayer theory and percolation theory to 
equilibrium polymer systems. 

In general the complete description of the system should include both the 
geometrical coordinates and their conjugate momenta. If the system is ergodic, its 
phase space distribution function is given by the Gibbs formula 171: 

Here F({ri,pj}) is the total energy of the system, which can be written as a sum of 
potential and kinetic energies: F(ri,pj}) = U({ri}) + E({rj,pi}). If kinetic energy 
depends only on p i ,  the integration over the momenta pi and integration over ri are 
independent and use of (1) is justified. In constrained systems the kinetic energy term 
is, in general, dependent on the configuration. Let us consider the planar ( d = 2 )  
configuration of two joint sticks both of unit length and mass in the absence of 
excluded volume effects. This system can be characterized by the position of its centre 
of mass R and by the rotation angles a, and a2 (see figure l(a)). It is more convenient 
instead of al and a2 to use their linear Combinations 

n- (a1 - a21 and8= %+a2 Q=- 
2 

The moment of inertia of two sticks, is dependent on the angle 8. Then the kinetic 
energy of these system can be written as a function 8, 6, 4 ,  R: 

1 side 1 cos28 E =  -+- Qz+ -+- 
(12 4 j '  (12 

4 jO2+k'. (3) 



Letter to the Editor L969 

The momentapj= aE/ari conjugated to the centre of mass coordinate R and to the 
angles Q and 0 are 

After integration over pR;  pn; p s  we obtain the configuration space distribution 
function 

f (e)  =‘(;+sin’ e j  ”( + cos2 o j ” (4) 

(the normalization factor is omitted here and in expressions given below). This 
distribution shows a substantial reduction for probability of stretched (0 = 0) or folded 
(0 = d 2 )  configurations. Nevertheless the average distance between the ends of two 
link chains is the same as in the ‘geometric’ picture: (R2) = 2. 

It is easy to check that this result is sensitive to any additional restrictions on the 
two sticks. The energy functional (3) will have a different form if we assume that the 
position of one of the ends is fixed, or one of its coordinates is fixed, for example the x- 
coordinate. Thjs will result in distribution functions different from (4). In the above 
calculations we suggested the mass of the sticks is uniformly distributed along their 
length so the moment of inertia of the stick is 1/12. If we assume that the mass is 
concentrated mainly at the ends of the sticks (necklace model) the moment of inertia 
of each particular stick will be $. In this case the numerical coefficients +in (4) should 
be replaced by 2. The anisotropy of the distribution is much lower in this case [lo]. It 
is clear that the difference in masses of adjacent sticks will also change the angle 
distribution functions in the above examples. In the limiting case, when the ratio of 
masses tends to zero, the distribution function is constant. 

We can study the internal structure of polymer chain of length N>> 1 considering 
the simplified picture of two monomers (sticks) somewhere inside the chain (figure 
l(b)). There is a subchain of n monomers attached to one external end of these two 
monomers and a subchain of N-n-m monomers attached to the other end. After 
thermal averaging over all other degrees of freedom is done, the rest of the chain can 
be represented by masses Ml=N-n-2 and M2=n placed at the external ends of two 
sticks. If both N-n-2 and n are much larger than 1, the centre of mass of the whole 
system will be somewhere on the line connecting M I ,  M,, and this line can be 
considered as a symmetry axis of the system. For the distribution function we obtain: 
f(e)=lsinZeI for d=2, andf(0)=lsin2012for d = 3 .  This means thatthe perpendicu- 
lar configuration of adjacent monomers is the most probable one. Nevertheless, 
asymptotically, the mean square distance between the ends of the chain remains 
nearly the same as in the ‘geometrical’ model: ( R 2 ) = N +  0(1), where 0(1) is a finite 
contribution from the ends of the chain. 

It is interesting to consider the configurational properties of a star-like structure of 
three rigid sticks jointed by their ends (figure 2). After some simple algebra, the result 
for the distribution function of the angles between the ends is (d=2) 

Here e,, are the angles between sticks i and j .  The most probable configuration in this 
case is one with all three sticks pulled apart from each other. 

The rigidity of sticks is important in the above examples. In fact due to the rigidity, 
the motion of the centre of mass of one particular sticks along n-, y- and z-directions is 

f(e) = (4 -CO? e, - cos2 e,, - cosz e,3)1nqe, + e,, + e13 - 2n). (5) 
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coupled and depends on the position of the adjacent sticks. Thus the effective masses 
in the expression for kinetic energy are anisotropic and configuration dependent. 
After integration over the momenta this results in inhomogeneous probability weights 
for different configurations. 

Another delicate issue is the definition of a joint between the ends of two 
monomers. In classical mechanics if two ends are connected by a free joint, it is 
assumed that both the relative velocities of the ends and their relative displacements 
are zero: u1 - u2 = 0; rl - r2= 0. It is remarkable that it is possible to introduce another 
definition of the free joint [SI. Let us assume that there is a strong attraction between 
the end points oftwo sticks rl and r, with a potential V(rl-  r,), and this potential has a 
minimum at rl - r, = 0. In the limit of inlinitely strong potential we have a constraint 
on the relative position of these ends r1-r2=0, but their velocities U,, U, remain 
uncorrelated. The instantaneous momenta of the two sticks pl, p 2  are also uncorre- 
lated. If this definition of a free joint is used, the integration over pi in partition 
function (2), is decoupled from integration over ri and use of (1) is justified. It appears 
that two delinitions of the joint lead to two different distribution functions for the 
angle between rigid sticks! Two models are characterized by different average kinetic 
energies and different entropies. However, the difference between the two models 
exists only in classical mechanics. Considering the limit of infinitely strong attraction 
V(+, - rz) between the two ends we should take into account limitations introduced by 
quantum mechanics. The problem is equivalent to the problem of a ‘particle’ with a 
coordinate r= r, - r2 in a potential V(r). The motion of the particle in the potential is 
quantized and the distance between the energy levels is inversely proportional to the 
strength of the binding potential. If the distance between energy levels is less than the 
temperature, many energy levels contribute to the motion of the particle. In this case 
the classical description is valid and the motion of the particle is uncorrelated with its 
position. When the strength of the binding potential is increased, the distance 
between the energy levels of a ‘particle’ increases and becomes larger than the 
temperature. In the limit of infinitely strong potential only the ground-state level 
remains important. In other words the additional degree of freedom, which in the 
classicallimit correspond to uncorrelated velocity, becomes ‘frozen out’ in the limit of 
large V(r).  The difference between the two above models of a free joint then 
disappears. 

The covalent chemical bonds between monomers in a polymer chain are rather 
rigid: the typical excitation energy of a carbon-carbon or silicon-silicon bond is of the 
order 0.1 eV, and at room temperature it should be in the ground state. This allows us 
to use, for a description of a polymer chain, the above picture of sticks connected by a 
rigid joint. It is known from infrared spectroscopy that the excitation energy of 
rotational degrees of freedom of a covalent bond can vary from 0.01 to 0.1 eV. This 

Figure2. Three rigid stickscnnoected by afree joint (D=2) .  
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means that in one case the joint can be considered as a free one, in the other case as an 
absolutely rigid joint. 

The above effects of coupling of the configurational and dynamical degrees of 
freedom can substantially restrict the applicability of Flory-Stockmayer theory and 
percolation theory to equilibrium polymer systems. The distribution function of the 
connected clusters-molecules in these theories are controUed only by the energy of 
formation of chemical bonds and by configurational entropy. This distribution 
function of the connected clusters has the form Ps-S-re-gs. Here S is the average 
cluster size and z is a critical exponent; z=* in the Flory-Stockmayer theory and 
~ ~ 2 . 2  for the percolation model. We can repeat aU the arguments of the above 
theories but start, not from (l), but from (2). If we assume that the clusters formed 
from monomers are rigid, i.e. they do not have any internal vibrational or rotational 
degrees of freedom the final result will be 

I+(./, . . ../d)-v2S-d’2-‘e-gs. (6) 
Here J,  U = 1, . . . , d are the principal values of the moment of inertia of the cluster. 
For tree-like structures J,=S’+’+ with df=4 (Flory-Stockmayer); in percolation 
theory df=2.5. This classical consideration of external rotational degrees of freedom 
is possible only if the distance between the energy levels of the rotator is less than the 
temperature; otherwise only the ground state of the rotator contributes to the 
partition function. This means that rotational degrees of freedom are ‘frozen out’ and 
Ps is independent of J.. The situation becomes more complicated if the clusters are 
not completely rigid, but have some internal rotational degrees of freedom. 

For large clusters the internal rotational and vibrational degrees of freedom should 
be taken into account. For a linear chain made from S monomers the lowest 
vibrational frequency is of the order w =S-’w, where hoo is the excitation energy of 
the joint (of the chemical bond). For a random branched structure of the same mass 
the lowest vibrational frequency is of the order w=S-”oo. For large enough 
fragments of the structure such that hw = kTthe structure cannot be considered rigid 
any more. On this scales the dynamical and configurational degrees of freedom can be 
separated and the Flory-Stockmayer formula becomes valid. 

We have shown that in systems with internal constraints the geometrical approach is 
inapplicable and more general considerations are needed. The results of consideration 
of particular simple cases happens to be sometimes counterintuitive, but qualitatively 
can be summarized as follows: The most probable are the configurations which have 
the largest product of all moments of inertia with respect to principal axes, and the 
largest masses associated with the internal modes. 

In a long polymer chain the most probable are the configurations of adjacent 
monomers perpendicular to each other. Due to the central limit theorem this does not 
affect the Gaussian statistics of an unperturbed polymer coil. Nevertheless, if the coil 
is strongly stretched the internal correlations give the additional mechanism of 
nonlinear rigidity. In the branched polymer structures we found the effective dynami- 
cal repulsion of adjacent monomers at the branching points. This results in an 
effective increase of the elementary length in the problem. The presence of closed 
loops in a branched polymer may produce strong non-trivial correlations. We expect 
effects of coupling of configurational and dynamical degrees of freedom to be the 
strongest in the systems with a maximum number of constraints, such as a rigid-stick 
model of membranes, surfaces 191 or models of gel [lo]. 
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